COMPUTER IMPLEMENTED METHOD FOR SECURE TRANSFER OF TOKENS

Technical Field 
	The present disclosure relates to blockchain systems for enabling a secure transfer of tokens. More particularly, the present disclosure relates to blockchain systems for transferring native tokens to target tokens and/or for facilitating a user action.  
Background 
	Blockchain is a decentralized, distributed ledger technology that records transactions across a network of computers. Each block in the blockchain may comprise a list of transactions, a timestamp and a cryptographic hash of the previous block (which may link the blocks together). The blockchain comprises blockchain nodes, which are computers (or participants) in the network that maintain a copy of the blockchain and validate transactions. The blockchain may store one or more smart contracts, wherein a smart contract is a self-executing program that automates one or more actions required in a blockchain transaction. The blockchain may also store a user account or wallet, which is a digital tool that stores and/or manages the keys for accessing cryptocurrencies or tokens.  
	A token may represent a digital asset that can be assigned a price. A native token is the underlying digital asset of the blockchain. Tokens may represent a tradeable or utility asset that is built on top of an existing blockchain network.  Tokens may be transferred, for example, from one user’s account to another user’s account. In other examples, native tokens may be transferred to target tokens. Blockchain systems typically use a multi-transaction approve/transfer flow for transferring tokens. A multi-transaction approve/transfer flow for transferring tokens may separate the approval and transfer of the tokens into two distinct transactions. In some examples, in a multi-transaction approve/transfer flow a first user or token owner may generate a first blockchain transaction. The transaction may authorise a third party (e.g., a smart contract or a second user) to spend an amount of tokens on the behalf of the first user. The authorised third party (e.g., the authorised smart contract or second user) may generate a second blockchain transaction. The second blockchain transaction may then execute the transfer of tokens. 
It is identified in the present disclosure that currently, the multi-transaction approve/transfer flow process requires multiple data transmissions, which causes increased overhead and/or persistent allowances (which as a result may decrease the security of the transaction). The multiple data transmissions may further cause an increase in the total gas (i.e., the fee paid to the network to process a transaction). Users may pay gas fees using a cryptocurrency related to the blockchain platform being used. For example, for the Ethereum blockchain network, gas fees may be paid in Ether (ETH). 
It is an aim of the present disclosure to overcome or mitigate these drawbacks. The present disclosure aims to provide a computer-implemented method for enabling a secure transfer of tokens using a blockchain. The present disclosure aims to provide a computer-implemented method for transferring tokens more efficiently and more economically, by reducing data transmissions and as such reducing overhead and total gas. 
Summary 
Accordingly, in a first aspect the present invention provides a computer-implemented method for enabling a secure transfer of tokens using a blockchain, according to claim 1.
	In a second aspect the present invention provides a computer-implemented method of transferring tokens using a blockchain, according to claim 12.
	Preferred features of these aspects of the present invention are defined in the respective dependent claims.
It will also be noted that unless expressly stated otherwise features of the various aspects can be combined in any way to form other aspects of the invention.


Brief description of drawings 
	 Figure 1 schematically shows an example method flow according to an embodiment of the invention;
Figure 2 schematically shows an example method flow according to an embodiment of the invention;
	Figures 3 to 22 show example user interfaces of an exemplary mobile application in which the invention may be embodied. 
Detailed description
	 As discussed above, the present disclosure relates to blockchain systems for enabling a secure transfer of tokens. More particularly, the present disclosure relates to blockchain systems for transferring native tokens to target tokens and/or for facilitating a user action.  The present disclosure also relates to a mobile application (which may for example be commercially known as the “Chukker App”), which provides a marketplace for consumers to, among other functionalities, purchase products related to a variety of equine sports. The App or application may include a payment system including a proprietary currency (chukkerCoin), enabling consumers to securely make payments and purchases. 
As also discussed above, multi-transaction approve/transfer flow processes for transferring tokens requires multiple data transmissions. This may cause increased overhead in the blockchain system and/or persistent allowances (e.g., ongoing token spending permissions which remain active until explicitly changed or revoked). Persistent allowances may decrease the security of the transaction. The multiple data transmissions may further cause an increase in the total gas that is payable by the user. 
The present application aims to mitigate these drawbacks. Stated differently, the present application aims to provide a computer-implemented method which enables a single-transaction approve/transfer flow for transferring tokens (e.g., transferring native tokens to target tokens and/or transferring tokens to cause an execution of a user action.  For example, a smart contract may be configured to purchase target tokens using a single transaction.  In some examples, a smart contract may be configured to perform an in-transaction authorisation process which enables the smart  contract to authorise a user generated blockchain transaction, update a user account associated with the user, execute an action and emit the action (e.g., store a minimum threshold of events associated with the action on the blockchain) using a single transaction. Using a single transaction to transfer tokens may reduce data transmission, reduce overhead may help to avoid persistent allowances (which as a result increases the security of the blockchain transaction). The reduction in data transmission may further reduce the total gas.
In some examples, the present disclosure utilises blockchain systems and smart-contract enabled marketplaces on public, permissionless networks (e.g., Ethereum). When using the Ethereum blockchain platform, the native token (i.e., the underlying digital asset of the blockchain) is Ether (ETH). For example, the native token may comprise an Ethereum Request for comment #20 (ERC-20) token. A user may want to transfer native tokens (e.g., ETH tokens) for target tokens. In some examples of the present disclosure, the target tokens may comprise a proprietary currency, for example a currency called chukkerCoin (cC). The proprietary currency may comprise a token that enables users to access marketplace services via a mobile application, such as the Chukker App. 
Some components of the blockchain system of the present disclosure will now be described in more detail. One or more of the components may address practical constraints of running a mainnet commerce flow (e.g., pricing, volatility and safety) with token‑denominated fees and native token (e.g., ETH)‑settled primary sales.
The blockchain system may comprise a user wallet or account that is stored on the blockchain. The user account may comprise an externally owned account (EOA) or an account abstraction wallet. An EOA may be an Ethereum account controlled by a private key. An account abstraction wallet may comprise a smart contract-based wallet that behaves like an EOA but with programmable logic, which may allow more flexible and secure user experiences. The user wallet or account may store ETH tokens and/or chukkerCoin tokens. The user wallet or account may be used for signing messages (e.g., an Ethereum Improvement Proposal (EIP)-712 typed messaged) for intent (e.g., for signing a message confirming that the user wants to transfer tokens).  EIP-712 introduces a standard for typed structured data hashing and signing in Ethereum. It may be designed to make off-chain message signing more secure, readable, and resistant to phishing attacks. 
The blockchain system may comprise a relayer or forwarder. The relayer or forwarder. The relayer or forwarder is a service or entity that submits transactions (such as meta-transactions) on behalf of users to the blockchain. The relayer or forwarder may receive pre-signed user messages and submit them on-chain. In some examples, the relayer or forwarder may subsidise gas via an on-chain Paymaster that prices fees in chukkerCoin tokens. In some examples, the Paymaster is a smart contract. 
The blockchain system may comprise a token contract. In the present disclosure, the token contract may be defined as a cC token contract. The cC token contract may be a smart contract stored on the blockchain that defines and/or manages the token. The token contract may create (or mint) tokens (such as ERC-20 compatible tokens) with gas-minimising implementation. The token contract may define hooks for permit/authorisation-based spend. Stated differently, the token contract may define hooks that allow users to authorise token spending via a signed message (rather than via an on-chain approval). The “permit” function is defined in Ethereum Improvement Proposal (EIP)-2612. EIP-2612 is a standard which introduces a way to approve token transfers via signatures (e.g., rather than requiring users to send an on-chain transaction). This may reduce the transfer of messages/data, which may reduce overhead and also may enable token approvals to be gasless (i.e., as users do not need native tokens to approve token transfers). The “permit” function may also improve user experience (UX).  The hooks may be defined as smart contract functions or logic that trigger when a permit-based authorisation is used. The hooks may be used for validating a signature, updating allowances and/or executing a user intended action. The proprietary currency may comprise a gas‑efficient ERC‑20 token implementation with EIP‑2612 permit and pausable/ownable controls. Pausable controls may allow the user to pause certain functions  (e.g., transfer and transferFrom functions) of the smart contract (e.g., during emergencies or during upgrades). Ownable controls may define an ”owner” of the smart contract. The “owner” of the smart contract may have an exclusive right to perform an administrative action (such as pausing or unpausing functions of the smart contract). 
The blockchain system may comprise a marketplace controller smart contract. The marketplace controller contract may be defined as a smart contract or an on-chain module for executing marketplace actions (such as creating listings for products, purchasing products or creating bookings for holidays etc.) and collecting token-denominated fees in a single transaction via a signature-based spend.
The blockchain system may comprise a compliance registry smart contract. The compliance registry smart contract may enforce “know your customer” (KYC) and/or anti-money laundering (AML) compliance in decentralised applications, such as initial coin offerings (ICOs), token sales and/or regulated marketplaces. In some examples, instead of storing full KYC or AML data on-chain, the compliant registry smart contract uses a hashed allowlist or a Merkle root to verify whether a user is authorized to participate in a decentralized application (e.g., an ICO). In some examples, a hashed allowlist permits a pre-approved set of users, without revealing the full list of approved users on-chain. 
In some examples, the blockchain system comprises an ICO sale smart contract. The ICO sale smart contract may manage public sale (e.g., manage price of products, thresholds of prices and/or vesting). In some examples, the ICO sale smart contract may integrate compliance checks and/or oracle-based pricing. In some examples, an oracle is a service that connects smart contracts to external data sources (e.g., as blockchains may not be able to access off-chain data directly). The ICO sale smart contract may query an oracle for accessing current prices of the native token, target token and/or fiat currencies (e.g., pounds sterling, dollar or Euros etc). 
In some examples, the overall system may comprise one or more off-chain services (i.e., systems and/or infrastructure that operates outside the blockchain network but interact with the blockchain). Some examples of off-chain services include: a compliance and registry service (e.g., a KYC provider); oracles (e.g., a price feed reader or live sports scores reader); a relayer service; and storage for rich listing metadata (e.g., IPFS or Arweave) which may be referenced on-chain by content hashes. 
Some examples of the present disclosure will now be described in more detail with respect to Figures 1 to 22. 
Figure 1 shows an example method flow of an embodiment of the present disclosure. The method flow represents a computer-implemented method for transferring tokens using a blockchain, for example, to purchase target tokens using native tokens. In some examples, the native tokens may comprise ETH tokens (e..g, ERC-20 tokens) and the target tokens may comprise proprietary currency, such as cC tokens. As discussed in more detail below, Figure 1 relates to an on‑chain token sale with robust price‑feed validation (e.g., using dual Chainlink feeds, staleness and deviation guards, slippage thresholds and minimum‑purchase constraints). The method of Figure 1 may enable a single transaction for purchasing target tokens. 
At S101, a smart contract 102 may be generated for storing on the blockchain. A user 100 may submit, to a smart contract 102, a first blockchain transaction comprising an amount of native tokens. For example, a user 100 may submit a message or first blockchain transaction to a smart contract, the message or first blockchain transaction for buying target tokens (e.g., cC tokens) with native tokens (e.g., ETH tokens). In some examples, a relayer is configured to receive the first blockchain transaction from the user 100 and forward the first blockchain transaction to the smart contract 102. In some examples, the user 100 is configured to sign the first blockchain transaction before sending the first blockchain transaction to the relayer. In some examples, the first blockchain transaction may comprise one or more core structs. Core structs are data structures used to define and manage components of a blockchain system or the smart contract 202. For example, the core structs may be used to organise data . In some examples, the one or more core structs may comprise information indicating at least one of: a location of the user; a time that the first blockchain transaction was generated by the user; a maximum time period threshold for authorising the first blockchain transaction (e.g., a deadline for authorisation); and a replay protection nonce (e.g., a single-use nonce). In some examples, the smart contract 102 enables gasless approvals via a “permit” function (EIP-2612) e.g., permit(…) using domain separation, per-user nonces and/or deadline enforcement (e.g., using a maximum time period threshold for authorising the transaction). 
At S103 and S105, the smart contract 102 is configured to access pricing information (e.g., requesting latestRoundData or price data to a price feed and receiving requested price data or updated price data from the price feed) associated with the amount of native tokens in the first blockchain transaction. In some examples, accessing pricing information associated with the amount of native tokens may comprise accessing pricing information from an oracle 104 (e.g., Chainlink price feeds). In some examples, the pricing information is fixed (e.g., with internal precision accounting). 
At S107, the smart contract 102 is configured to generate target tokens, based on the amount of native tokens in the first blockchain transaction. For example, the smart contract is further configured to perform at least one of: verify the pricing information based on at least one of a timestamp of the pricing information and a deviation of the pricing information compared to threshold pricing information (e.g., previously stored pricing information); determine an amount of a fiat currency (e.g., pounds sterling, dollar, Euro etc.) that corresponds to the amount of native tokens comprised in the first blockchain transaction, based on the pricing information; determine whether the amount of fiat currency satisfies a minimum threshold requirement associated with the amount of fiat currency;  determine an amount of target tokens that corresponds to the amount of the fiat currency, based on the pricing information and a slippage threshold associated with a minimum amount of expected target tokens; determine one or more availability requirements and adjust the determined amount of target tokens based on the one or more availability requirements; and cause a user account stored on the blockchain associated with the user 100 to be updated to include the determined amount of the target tokens. 
In some examples, verifying the pricing information may be based on primary and fallback oracle price feeds. In some examples, verifying the pricing information is based on a timestamp of the pricing information. For example, verifying the pricing information is based on a runtime staleness check of the pricing information (e.g., max_price_staleness = 1 hour). In this example, where the pricing information is less than 1 hour old, the smart contract may be configured to verify the pricing information. As another example, where the pricing information is more than 1 hour old, the smart contract may be configured to not verify the pricing information. 
In some examples, verifying the pricing information is based on a deviation of the pricing information compared to threshold pricing information (e.g., previously stored pricing information). For example, where a maximum deviation is configured to be 10%, the smart contract may be configured to verify the pricing information if the deviation of the of the pricing information compared to threshold pricing information is less than 10% and not verify the pricing information if the deviation of the of the pricing information compared to threshold pricing information is more than 10%). In some examples, where the smart contract 102 does not verify the pricing information (e.g., based on staleness or deviation), the smart contract may use a fallback oracle price feed. 
In some examples, the smart contract 102 is configured to determine an amount of a fiat currency that corresponds to the amount of native tokens comprised in the first blockchain transaction, based on the pricing information. For example, the smart contract 102 may determine an amount in Euros that corresponds to the amount of native tokens in the first blockchain transaction (e.g., 100 ETH = 1000 US dollars). 
In some examples, the smart contract 102 is configured to determine whether the amount of fiat currency satisfies a minimum threshold requirement associated with the amount of fiat currency. For example, the smart contract 102 may enforce a minimum purchase of $1000. For example, if the transaction comprises 90 native tokens (which may, for example, equate to $900) the smart contract 102 may determine that the amount of fiat currency does not satisfy the minimum threshold requirement. In some examples, enforcing a minimum purchase is a user-side protection. 
In some examples, the smart contract 102 is configured to determine an amount of target tokens that corresponds to the amount of the fiat currency, based on the pricing information and a slippage threshold associated with a minimum amount of expected target tokens. For example, the smart contract 102 may determine that $1000 corresponds to 10 target tokens. In some examples, the user indicates a minimum amount of expected tokens (e.g., minTokensExpected). The slippage threshold associated with the minimum amount of expected target tokens indicates a threshold value for the difference between the minimum amount of expected target tokens and the actual number of tokens. For example, the slippage threshold may comprise a 1% slippage guard. In this case, if the determined target token amount is more than 99% of what the user expected (based on the minimum amount of expected target tokens) the transaction may be successful. However, if the determined target token amount is less than 99% of what the user expected (based on the minimum amount of expected target tokens) the transaction may not be successful. In some examples, this protects the user from unexpected price drops, oracle manipulation or execution delays (e.g., due to price fluctuations or rounding errors during the transaction). 
In some examples, the smart contract 102 is configured to determine one or more availability requirements (e.g., cap check) and adjust (e.g., partial fill adjust) the determined amount of target tokens, based on the one or more availability requirements. The one or more availability requirements may comprise at least one of: a maximum availability of the target tokens; or a maximum availability of gas. For example, the maximum availability of the target tokens may be defined by the number of target tokens that remain for sale (e.g., TOKENS_FOR_SALE = 30M). For example, if the transaction comprises an amount of native tokens that corresponds to 40M target tokens, the smart contract 102 may partially execute the transaction by adjusting the transaction to fill 30M (as this is the maximum number of target tokens available). In some examples, the maximum availability of gas defines gas limits of the transaction. In this case, if full execution of the transaction would exceed gas limits, the smart contract may partially execute the transaction by adjusting the transaction such that it does not exceed the gas limits. In some examples, the smart contract 102 enables a fixed initial supply of target tokens which are minted at deployment (e.g., INITIAL_SUPPLY = 50M * 1e18). The user may mint the target tokens until finishMinting () is called, after which there is no more minting.
At S109, the method comprises submitting the smart contract 102 to one or more blockchain nodes 106 to be stored on the blockchain. For example, the smart contract 102 may send safeTransfer tokens to the blockchain nodes and/or user 100. 
At S111, the smart contract 102 may determine whether a refund of native tokens is needed. Where it is determined that a refund is required, the smart contract 102 is configured to cause the user account to be updated to include a refund of excess native tokens which are not transferred to target tokens. For example, endTokenSale() returns unsold tokens to the user 100.  
At S113, the smart contract 102 may indicate to the user 100 that the target tokens have been added to the user account (e.g., Emit TokensPurchased event)/ 
In some examples, the user may generate a second blockchain transaction for executing a user action. The user action may be a gasless, KYC gated market place action. Fee collection by the smart contract 102 for executing said user action may in be performed using just one transaction (and no further transactions). During fee collection, user privacy may be preserved (e.g., using KYC information) and gas may be lowered via compression and batching. 
In some examples, the smart contract 102 may be configured, when called by a second blockchain transaction generated by the user 100 comprising an amount of target tokens and defining an action to be performed by the smart contract 102: authorise the second blockchain transaction;  cause the user account associated with the user to be updated to reduce the amount of the target tokens, based on a transaction fee associated with the action; execute the action; and store a minimum threshold of events associated with the executed action on the blockchain. 
In some examples, the smart contract 102 may be configured to authorise the second blockchain transaction, cause the user account associated with the user to be updated to reduce the amount of the target tokens, based on a transaction fee associated with the action, execute the action  and store a minimum threshold of events associated with the executed action on the blockchain using a single transaction (e.g., without the use of any further transactions). 
In some examples, the second blockchain transaction may comprise an amount of target tokens corresponding to the fee of the user action.  In examples, the user 100 may sign an EIP-712 message describing the user action (e.g., “CreateListing”). In some examples, the user 100 is configured to sign the second blockchain transaction before sending the second blockchain transaction to a relayer. The relayer may forward the second blockchain transaction to the smart contract 102. For example, the relayer may submit an executeWithSignature(…) message to the smart contract 102. 
An example EIP-712 typed data digest produced off-chain by the user may be as shown below: 
// EIP-712 typed data digest produced off-chain by the user.
struct ActionPermit {
    address user;
    uint8   action;        // e.g., LIST=1, APPLY=2, BOOK=3
    uint256 maxFee;        // in cC
    uint256 nonce;
    uint64  deadline;      // unix ts
    bytes32 contextHash;   // IPFS CID hash or params hash
}
An example pseudo-code executed by the smart contract 102 may be as shown below:
function executeWithSignature(
    ActionPermit calldata p,
    bytes calldata userSig
) external {
    _checkSigAndNonce(p, userSig);
    _checkCompliance(p.user);
    _collectFeeWithPermit(p.user, p.maxFee); // single-step authorisation + transfer
    _executeAction(p.action, p.contextHash, p.user);
}
In some examples, the smart contract 102 may be configured to verify the second blockchain transaction by verifying at least one of: EIP-712 signature; nonce (replay protection per-user); a compliance registry (e.g., using KYC or AML information); fee parameters (e.g., rate card and/or dynamic fee schedules). In some examples, rate card plug-ins may comprise utilising different fees per action/role/region with hash-committed schedules updated atomically.
In some examples, the smart contract 102 may be configured to cause the user account associated with the user to be updated to reduce the amount of the target tokens, based on a transaction fee associated with the action by pulling fees in cC tokens without prior approval (e.g., by using an in-transaction authorisation/permit process without typical ERC-20 approve). For example, the in-transaction authorisation/permit process may allow the smart contract to pull the exact fee for the action using one or more core structs. For example, to cause the user account associated with the user 100 to be updated to reduce the amount of the target tokens, based on the transaction fee associated with the action, the smart contract 102 may be configured to collect an exact transaction fee associated with the action from the user account based on one or more core structs. In some examples, this may help to avoid persistent allowances. This may also help to reduce risk, overhead and therefore gas. 
In some examples, the second blockchain transaction may comprise one or more core structs. In some examples, the one or more core structs may comprise information indicating at least one of: the user action (e.g., action type); a location of the user; a time that the second blockchain transaction was generated by the user; a maximum transaction fee threshold associated with the action (e.g., a cap); a maximum time period threshold for authorising the second blockchain transaction (e.g., a deadline for authorisation); a replay protection nonce (e.g., a single-use nonce or bounded multi-use allowance); and information of a target smart contract.
In some examples, the smart contract 102 may be configured to bit-pack the one or more core structs into one or more storage slots. For example, the smart contract 102 may bit-pack core structs (e.g., listing state, role flags, action counters) into 1–2 storage slots. Bit-packing the one or more core structs into one or more storage slots may help to reduce the storage load of the smart contract and/or to reduce SSTORE/SLOAD operations). An example of bit-packing core structs into two slots is shown below:
slot0: [status:2][roleFlags:6][region:12][createdAt:40][sellerPtr:160]
slot1: [priceCC:128][feePaidCC:64][nonce:64]
In some examples, the smart contract 102 may execute the action (e.g., write the listing/application state) using packed storage. For example, this may comprise packing multiple variables in a storage slot to minimise the number of gas costs and/or reduce SSTORE operations. 
In some examples, to store a minimum threshold of events associated with the executed action on the blockchain, the smart contract may be configured to perform at least one of: cause rich metadata to be stored off-chain and/or index certain core structs for off-chain indexing.  In some examples, rich metadata refers to detailed, descriptive, or large data, such as images, media, location data reviews or comments. In some examples, storing off-chain comprises any storage other than blockchain, e.g. local storage, cloud storage etc. In some examples, a hash of the rich metadata may be stored on the blockchain. 
In some examples, the user action may comprise marketplace actions on the Chukker App. In some examples, the action may comprise, but is not limited to, at least one of: listing a product on a mobile application (e.g., the Chukker App); trading or renting products with other users; or booking transport for products. 
In some examples, gas is paid using the target token (e.g., cC tokens) via a Paymaster (e.g., EIP-4337), which may swap/settle to the native token (e.g., ETH) or reconcile off-chain. In some examples, the Paymaster may comprise deterministic mark-ups  and/or time-weighted average price (TWAP)-based conversion safeguards. 
In some examples, the method may further comprise ICO participation with compliance gating and a single-step purchase. For example, a buyer (e.g., of a product that has been listed) may sign a typed message comprising at least one of: allocation; price; deadline; beneficiary; and nonce. A smart contract 102 (e.g., the sale smart contract) may validate the signature, check the ComplianceRegistry, compute tokens, and mint/transfer the seller using one transaction. In some examples, the method may comprise dynamic ETH/USD pricing via an oracle; per-region allowlist keys (hashed) to enforce geo-policies without storing personally identifiable information (PII) on-chain. 
In some examples, gas-minimising (or efficient on-chain storage) smart contract architecture and/or data structures of the blockchain system may include one or more of: batching/aggregating to enable a single call for authorising a transaction, extracting a fee for an action, executing the action and emitting the action; slot packing and/or bitfields (e.g., wherein one or more core structs are bit-packed into 1–2 storage slots to reduce SSTORE/SLOAD); custom errors (e.g., error NotAuthorised();) instead of revert strings to reduce attack surface and gas; unchecked arithmetic in safe contexts and/or uint256 canonical types to avoid widening/narrowing costs; cross-chain variant (e.g., a same pattern on L2 with canonical bridges and/or proofs of KYC status relayed via message passing); event minimisation (e.g., only indexed fields may be required for off-chain indexing, rich metadata may be stored off-chain, wherein InterPlanetary File System (IPFS) Content Identifier (CID) may be stored on-chain as bytes32; stateless execution pattern for one-shot actions (which may result in no redundant storage writes); deterministic deployments (e.g., CREATE2) for per-collection/per-region modules known off-chain pre-deployment (which may save registry lookups and may be instantiated on demand); a domain-separated EIP-712 forwarder/relayer which verifies signatures then calls the smart contract (which may help to avoid redundant verifications inside each module); oracle access performed off-chain with signed quotes that the smart contract may verifies (e.g., to avoid on-chain aggregator costs when exactness is not mandatory); oracle failover (e.g., with operator toggle and telemetry, for example (PriceFeedSwitch, PriceObtained); and off-chain KYC/AML gating prior to sale participation (integration at application layer); 
In some examples, the blockchain system (e.g., the smart contract) may implement a security model. In some examples, the security model may comprise at least one of: checks, effect, interactions (CEI) pattern and re-entrancy guards only where needed (e.g., to reduce data transmission and/or gas); operational safety during abnormal markets (e.g., pausable/unpausable sales (which may halt transfers and transferFroms); safeERC20 transfers; ownable administrative boundaries; emergency native tokens (e.g., ETH) withdrawal; guarded native currency (e.g., ETH) refunds; pausable and/or role-gated admin functions  during  (e.g., fee schedule updates or pausing only specific actions)); per-user nonces and/or session keys (e.g., short-lived delegations) for repeated actions without re-authorising full allowances; compliance registry may only store hashes/Merkle roots (and not PII), wherein revocation lists may be supported via root rotation or keyed bitmaps. 
In some examples, the blockchain system (e.g., the smart contract) may implement state integrity contributions such as one or more of: contributions accounting (e.g., tracking how much each user has contributed to a sale); sold-token tally (e.g., a running total of tokens sold during a sale); checking token balance before selling tokens (e.g., to present overselling); and end of sale unsold token recovery to owner. 
Figure 2 shows an example method flow of an embodiment of the present disclosure. The method flow represents a computer-implemented method for listing a fee payment (e.g., for a product) using the target token (e.g., cC tokens) and an auditable fee transfer. 
At S201, a user 200 or user account may obtain a fee for listing a product. For example, the Chukker App 202 may indicate to the user 200 or user account a fee for listing a product. 
At S203, the user 200 or user account may approve or authorise the fee (e.g., via a permit signature off-chain). In some examples, the user 200 or user account may submit the authorisation to a relayer or smart contract 204. 
At S205, the user 200 may pay for the listing via the Chukker App 202 (e.g., payForListing(). For example, the user account may be reduced by an amount equal to the fee of the listing. In some examples, the user may pay for the listing using cC tokens. 
At S207, the Chukker App 202 may submit the payment (e.g., as a safeTranferFrom message) to the smart contract 204. The smart contract 204 may be submitted to one or more blockchain nodes on the blockchain. 
At S209, the Chukker App 202 may indicate to the user 200 that the user 200 has successfully paid for the listing (e.g., PaidForListing event). In some examples, admin operations may include updating fees and/or withdrawing accumulated tokens e.g., with custom errors such as (ZeroAmount, InsufficientBalance). In some examples, admin-only flows are explicit. 
Figures 3 to 22 show example user interfaces of the Chukker App. One or more of the blockchain methods/systems/components described above may be used to facilitate commerce of the Chukker App. The Chukker App offers results and fixtures of various sports across the world, and in particular polo, polo crosse, endurance riding, dressage, show jumping, eventing and camel racing. Additional functions on the Chukker App may include the ability to connect with players, buy and sell products (e.g., ponies or horses) via a marketplace or inventory that may be unique to each user, trade and rent products (e.g., ponies or horses) via a marketplace or inventory that may be unique to each user, book polo holidays, book transport for products (e.g., ponies) or “piggyback” onto a current live journey, participate in polo games (e.g., in chukkers or tournaments), purchase products via an online shop, live stream the aforementioned sports and listen to podcasts. In some examples, the data related to the Chukker App is stored in cloud storage.
Figure 3 shoes an example user interface of some of example functions of the Chukker App including the ability to check scores of various sports (as shown in Figure 5), check information of players of the various sports (shown in Figure 6), “play” or participate in various sports (as shown in Figure 8), information related to “ponies” (as shown in Figure 7), access the shop and access media related to the sport. Figure 4 shows examples of the various sports that user’s can access information for. Figure 9 shows an example user interface for hiring ponies. Figure 10 shows an example user interface for booking transport for products (e.g., ponies). Figure 11 shows an example user interface for accessing information of ChukkerCoin (cC tokens). Figure 12 shows an example user interface for accessing a user wallet (e.g., which may show products that the user has purchased). Figure 13 shows an example user interface for buying ponies. Figures 14 and 15 show example user interfaces for selling ponies. Figure 16 shows an example user interface for purchasing stallions or ponies. Figure 17 shows an example user interface for hiring ponies. Figure 18 shows an example user interface for purchasing a pony as a syndicate (for example a group of users may purchase a pony together). Figure 19 shows an example user interface for viewing rankings of ponies. Figure 20 shows an example user interface for booking practice games. Figure 21 shows an example user interface for participating in a tournament. Figure 22 shows an example user interface for booking a polo trip. 
[bookmark: _Hlk211502323]The present disclosure therefore provides a computer-implemented method for enabling a secure transfer of tokens using a blockchain. Native tokens may be transferring to target tokens (e.g., cC tokens). The cC tokens may be used within the Chukker App to purchase, list and/or book a variety of products. 
In some examples, embodiments herein provide a single blockchain transaction with an in-transaction permit-style authorisation to pull an exact fee for an action and to execute the action atomically. The single transaction (rather than a standard multi-transaction process) may reduce data transmission, reduce overhead and may help to avoid persistent allowances (which as a result may increase the security of the transaction). The reduction in data transmission may therefore reduce the total gas. In some examples, embodiments herein enable bit-packed storage, hashed external metadata, minimal events, stateless patterns for reducing SSTORE/SLOAD and log costs. In some examples, embodiments herein provide a Compliance Registry using hashed allowlists and/or Merkle roots, wherein smart contracts may check user membership/revocation via compact proofs (without exposing PII on chain). In some examples, embodiments herein provide a relayer and Paymaster to enable gasless UX (e.g., interaction with blockchain applications without needing the native tokens (e.g., ETH tokens) to pay for gas) and target coin (e.g., cC token) priced gas, with bounded, action-scoped authorisations (resulting in no standing unlimited approvals). In some examples, embodiments herein provide per-action signatures with nonces/deadlines, contract-verified collection guarantees and bounded fee transfers. In some examples, some embodiments herein provide deterministic, indexable entry points across environments via CREATE2 deployments and EIP-712 domains.
It will be understood that the foregoing is by way of example only. Also, unless where explicitly stated otherwise, features from different Figures and/or embodiments may be combined. The scope of the invention(s) is defined by the appended claims. 


Claims 
[bookmark: _Hlk211517948]1.	A computer-implemented method for enabling a secure transfer of tokens using a blockchain, wherein the method comprises:
	generating a smart contract for storing on the blockchain, wherein the smart contract is configured to, when called by a first blockchain transaction generated by a user comprising an amount of native tokens of the blockchain:
· [bookmark: _Hlk211517826]access pricing information associated with the amount of native tokens; 
· verify the pricing information based on at least one of a timestamp of the pricing information and a deviation of the pricing information compared to threshold pricing information; 
· determine an amount of a fiat currency that corresponds to the amount of native tokens comprised in the first blockchain transaction, based on the pricing information;  
· determine whether the amount of fiat currency satisfies a minimum threshold requirement associated with the amount of fiat currency; 
· determine an amount of target tokens that corresponds to the amount of the fiat currency, based on the pricing information and a slippage threshold associated with a minimum amount of expected target tokens;
· determine one or more availability requirements and adjust the determined amount of target tokens, based on the one or more availability requirements; and 
· cause a user account stored on the blockchain associated with the user to be updated to include the determined amount of the target tokens, and 
submitting the smart contract to one or more blockchain nodes to be stored on the blockchain. 

2.	The method of claim 1, wherein the smart contract is further configured to cause the user account to be updated to include a refund of excess native tokens which are not transferred to target tokens. 

3.	The method of claim 1 or claim 2, wherein the one or more availability requirements comprise at least one of: a maximum availability of the target tokens; or a maximum availability of gas. 

4.	The method of any of claims 1 to 3, wherein the smart contract is further configured to, when called by a second blockchain transaction generated by the user comprising an amount of target tokens and defining an action to be performed by the smart contract: 
	authorise the second blockchain transaction;  
	cause the user account associated with the user to be updated to reduce the amount of the target tokens, based on a transaction fee associated with the action; 
	execute the action; and 
	store a minimum threshold of events associated with the executed action on the blockchain. 

5.	 The method of claim 4, wherein: 
the first and/or second blockchain transaction further comprises one or more core structs; and 
to cause the user account associated with the user to be updated to reduce the amount of the target tokens, based on the transaction fee associated with the action, the smart contract is further configured to collect an exact transaction fee associated with the action from the user account based on the one or more core structs. 

6.	The method of claim 5, wherein the one or more core structs comprise information indicating at least one of: the action; a location of the user; a time that the first and/or second blockchain transaction was generated by the user; a maximum transaction fee threshold associated with the action; a maximum time period threshold for authorising the first and/or second blockchain transaction; and a single-use nonce. 

7.	The method of claim 5 or claim 6, wherein the smart contract is further configured to bit-pack the one or more core structs into one or more storage slots.  

8.	The method of any of claims 5 to 7, wherein to store the minimum threshold of events associated with the executed action on the blockchain, the smart contract is configured to perform at least one of: cause rich metadata to be stored off-chain and/or index certain core structs for off-chain indexing. 

9.	The method of claim 8, wherein a hash of the rich metadata is stored on the blockchain. 

10.	The method of any of claims 4 to 9, wherein a relayer is configured to:
[bookmark: _Hlk211516799]receive the first blockchain transaction and/or the second blockchain transaction from the user; and
forward the first blockchain transaction and/or the second blockchain transaction to the smart contract. 

11.	The method of claim 10, wherein the user is configured to sign the first blockchain transaction and/or the second blockchain transaction before sending the respective blockchain transaction to the relayer. 

[bookmark: _Hlk211502359][bookmark: _Hlk211516388]12.	A computer-implemented method of transferring tokens using a blockchain, wherein the method comprises submitting, to a smart contract, a first blockchain transaction comprising an amount of native tokens, wherein the blockchain comprises a smart contract configured to: 
· access pricing information associated with the amount of native tokens; 
· verify the pricing information based on at least one of a timestamp of the pricing information and a deviation of the pricing information compared to threshold pricing information; 
· determine an amount of a fiat currency that corresponds to the amount of native tokens comprised in the first blockchain transaction, based on the pricing information;  
· determine whether the amount of fiat currency satisfies a minimum threshold requirement associated with the amount of fiat currency; 
· determine an amount of target tokens that corresponds to the amount of the fiat currency, based on the pricing information and a slippage threshold associated with a minimum amount of expected target tokens;
· determine one or more availability requirements and adjust the determined amount of target tokens, based on the one or more availability requirements;    and 
· cause a user account stored on the blockchain associated with the user to be updated to include the determined amount of the target tokens.  

13. 	The method of claim 12, wherein the smart contract is further configured to cause the user account to be updated to include a refund of excess native tokens which are not transferred to target tokens. 

14.	The method of claim 12 or claim 13, wherein the method comprises submitting, to the smart contract, a second blockchain transaction comprising an amount of target tokens and defining an action to be performed by the smart contract, wherein the smart contract is further configured to: 
	authorise the second blockchain transaction;  
	cause the user account associated with the user to be updated to reduce the amount of the target tokens, based on a transaction fee associated with the action; 
	execute the action; and 
	store a minimum threshold of events associated with the executed action on the blockchain. 

15.	The method of claim 14, wherein the method comprises:
signing the first blockchain transaction and/or the second blockchain transaction; and 
sending the respective blockchain transaction to a relayer. 



Abstract 
There is provided a computer-implemented method for enabling a secure transfer of tokens using a blockchain, wherein the method comprises generating a smart contract for storing on the blockchain, wherein the smart contract is configured to, when called by a first blockchain transaction generated by a user comprising an amount of native tokens of the blockchain: access pricing information associated with the amount of native tokens; verify the pricing information based on at least one of a timestamp of the pricing information and a deviation of the pricing information compared to threshold pricing information; determine an amount of a fiat currency that corresponds to the amount of native tokens comprised in the first blockchain transaction, based on the pricing information; determine whether the amount of fiat currency satisfies a minimum threshold requirement associated with the amount of fiat currency; determine an amount of target tokens that corresponds to the amount of the fiat currency, based on the pricing information and a slippage threshold associated with a minimum amount of expected target tokens; determine one or more availability requirements and adjust the determined amount of target tokens, based on the one or more availability requirements; and cause a user account stored on the blockchain associated with the user to be updated to include the determined amount of the target tokens. The computer-implemented method further comprises submitting the smart contract to one or more blockchain nodes to be stored on the blockchain.

[Figure 1] 


2

